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Abstract. Reporting to the Dirac wave-packet prescription where it is formally assumed the fermionic na-
ture of the particles, we shall demonstrate that chiral oscillations implicitly aggregated to the interference
between positive and negative frequency components of mass eigenstate wave-packets introduce some small
modifications to the standard neutrino flavor conversion formula. Assuming the corresponding spinorial so-
lutions of a ‘modified’ Dirac equation, we are specifically interested in quantifying flavor coupled with chiral
oscillations for a fermionic Dirac-type particle (neutrino) non-minimally coupling with an external mag-
netic field B. The viability of the intermediate wave-packet treatment becomes clear when we assume B
orthogonal/parallel to the direction of the propagating particle.

PACS. 03.65.-w; 11.30.Rd

1 Introduction

Obtaining exact solutions of a generic class of Dirac wave
equations [1–5] becomes important since, many times, the
conceptual understanding of physics can only be brought
about by such solutions. These solutions also correspond
to valuable means for checking and improving models
and numerical methods for solving complicated physi-
cal problems. In the context in which we intend to ex-
plore the Dirac formalism, we can report on the Dirac
wave-packet treatment which can be useful in keeping
clear many of the conceptual aspects of quantum oscil-
lation phenomena that naturally arise in a relativistic
spin-one-half particle theory. These studies have been par-
alleled by much progress on the theoretical front of the
quantum mechanics of neutrino oscillations, both in phe-
nomenological pursuit of a more refined flavor conversion
formula [6–8], which, sometimes, deserves special atten-
tion, and in efforts to give the theory a formal struc-
ture within quantum field formalism [9–11]. Under the
point of view of a first quantized theory, the flavor os-
cillation phenomena discussed in terms of the interme-
diate wave-packet approach [12, 13] eliminate the most
controversial points arising within the standard plane-
wave formalism [14, 15]. However, a common argument
against the intermediate wave-packet formalism is that os-
cillating neutrinos are neither prepared nor observed [16].
This point was clarified by Giunti [10], who suggested
a solution by proposing an improved version of the in-
termediate wave-packet model where the wave-packet of
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the oscillating particle is explicitly computed with field-
theoretical methods in terms of external wave-packets.
Since we intend to concentrate the discussion on the
Dirac equation properties for rigorously deriving a fla-
vor/chiral conversion formula for fermionic particles non-
minimally coupling with an external magnetic field, in
this preliminary investigation we avoid the field theor-
etical methods in detriment to a clearer treatment with
intermediate wave-packets which commonly simplifies the
understanding of physical aspects going with the oscilla-
tion phenomena.
From the experimental point of view, compelling ev-

idence has continuously ratified that neutrinos undergo
flavor oscillations in vacuum or in matter. For instance, we
refer to the outstanding results of the Super-Kamiokande
atmospheric neutrino experiment [17], in which a signifi-
cant up–down asymmetry of the high-energy muon events
was observed. We also have the results of the SNO so-
lar neutrino experiment [18, 19], in which direct evidence
for the transition of the solar electron neutrinos into
other flavors was obtained. Finally, the KamLAND experi-
ment [20] has confirmed that the disappearance of solar
electron neutrinos is mainly due to neutrino oscillations
and not to other types of neutrino conversions [21, 22].
The experimental data could be completely interpreted
and understood in terms of three flavor quantum numbers,
excepting the LSND anomaly [19, 23, 24], which permit
us to speculate the existence of (at least) a fourth neu-
trino (flavor?) which has to be inert. In fact, the hypoth-
esis of mixing between known neutrino species (electron,
muon and tau) and higher mass neutrinos including ster-
ile neutrinos was naively studied in the literature [25, 26].
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The neutrino spin flipping attributed to some dynamic
external [27] interacting process, which comes from the
non-minimal coupling of a magnetic moment with an ex-
ternal electromagnetic field [28], was formerly supposed
to be a relevant effect in the context of the solar neu-
trino puzzle. As a consequence of a non-vanishing mag-
netic moment interacting with an external electromagnetic
field, left-handed neutrinos could change their helicity (to
right-handed) [29]. The effects on flavor oscillations due
to external magnetic interactions in a kind of chirality-
preserving phenomenon were also studied [30] but they
lack a full detailed theoretical analysis. In the standard
model flavor-changing interactions, neutrinos with posi-
tive chirality are decoupled from the neutrino-absorbing
charged weak currents [31]. Consequently, such positive-
chirality neutrinos become sterile with respect to weak
interactions. Independently of any external electromag-
netic field, since neutrinos are detected essentially via
V-A charged weak currents, the chiral oscillation mechan-
ism by itself may even explain the ‘missing’ LSND data.
Despite the experimental circumstances not being com-
pletely favorable to such an interpretation, which should
be an additional motivation to our theoretical calcula-
tions, the quantum transition that produces a final fla-
vor eigenstate corresponding to an active–sterile quantum
mixing is perfectly acceptable from the theoretical point
of view.
To summarize, the main point to be considered in this

paper is concerned with accurately obtaining the complete
flavor/chiral conversion formula for fermionic particles, in-
dependently of its range of applicability, which certainly
will be determined in terms of more accurate experimen-
tal resolutions. After such an introductory perspective, the
first step of our study, which is presented in Sect. 2, is con-
cerned with the immediate description of chiral oscillations
in terms of the Hamiltonian dynamics ruled by the La-
grangian for the interaction between a fermionic field ψ(x)
and an electromagnetic field Fµν(x). We investigate how
the interactions with an external magnetic field can change
the characteristics of chiral oscillations which were previ-
ously obtained for free propagating particles in vacuum [8].
By including the effect of chiral oscillations, our final aim
consists in verifying how the interaction with an exter-
nal magnetic field can modify the neutrino flavor oscilla-
tion formula which was previously established by means of
what we call scalar prescription [32]. In Sect. 3, for treat-
ing the time evolution of the spinorial flavor eigenstates,
we shall take into account the chiral nature of charged
weak currents and the time evolution of the chiral operator
with Dirac wave-packets. To do it, we shall use the ‘modi-
fied’ Dirac equation (with the above non-minimal coup-
ling term) as the evolution equation for the mass eigen-
states. We just remark that we do not mind developing
the calculations concerned with analytic characteristics of
the localization of each mass (flavor) eigenstate, since all
the modifications introduced by this prescription can be
read independently of the wave-packet shapes. However,
we also dedicate an appendix to a small revision of the
fundamental points of the wave-packet formalism which,
eventually, can be important for proceeding with subse-

quent analytic calculations. Finally, we draw our conclu-
sions in Sect. 4.

2 Chiral oscillations in the presence
of an external magnetic field

In order to introduce the coupling with external magnetic
fields, we observe that even though presenting an electric
charge neutrality, neutrinos can interact with a photon
through loop (radiative) diagrams. The Lagrangian for the
interaction between a fermionic field ψ(x) and an electro-
magnetic field written in terms of the field-strength tensor
Fµν(x)= ∂µAν(x)−∂νAµ(x) is given by

L=
1

2
ψ(x) [σµν (µF

µν(x)−dFµν(x))+h.c.]ψ(x), (1)

where x = (t,x), σµν =
i
2 [γµ, γν ], the dual field-strength

tensor Fµν(x) is given by Fµν(x) = 1
2ε
µνλδFλδ(x)1 and

the coefficients µ and d represent, respectively, the mag-
netic and the electric dipole moments which establish the
neutrino–electromagnetic coupling. One can notice that we
have not discriminated the flavor/mass mixing elements in
the above interacting Lagrangian, since we are indeed in-
terested in the physical observable dynamics ruled by the
Hamiltonian

H = α ·p+βm−β
[σµν
2
(µFµν(x)−dFµν(x))+h.c.

]

= α ·p+β [m−µΣ ·B(x)−dΣ ·E(x)] , (2)

where, in terms of the Dirac matrices, α =
∑3
k=1 αk k̂ =∑3

k=1 γ0γk k̂, β = γ0, and B(x) and E(x) are respectively
the magnetic and electric fields. In fact, (2) could be ex-
tended to an equivalent matrix representation with fla-
vor and mass mixing elements where the diagonal (off-
diagonal) elements described by µi,j(mi,j) and di,j(mi,j),

where i, j are mass indices, would be called diagonal (tran-
sition) moments. In this context, for both Dirac and Majo-
rana neutrinos, we could have transition amplitudes with
non-vanishing magnetic and electric dipole moments [33–
35]. Otherwise, the CP invariance holds the diagonal elec-
tric dipole moments null [36]. Specifically for Majorana
neutrinos, it can be demonstrated that the diagonal mag-
netic and electric dipole moments vanish if CPT invariance
is assumed [33].
Turning back to the simplifying example of diagonal

moments and assuming CP and CPT invariance, we can
restrict our analysis to the coupling with only an external
magnetic field B(x) by setting d= 0. From this point, the
expression for µ can be found from Feynman diagrams for
magnetic moment corrections [36] and turns out to be pro-
portional to the neutrino mass (matrix),

µ=
3 eG

8
√
2π2
m=

3meG

4
√
2π2
µB mν = 2.7×10

−10 µB
mν

mN
,

(3)

1 εµνλδ is the totally fourth rank antisymmetric tensor.
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where G is the Fermi constant and mN is the nucleon
mass2. In particular, for mν ≈ 1 eV, the magnetic moment
introduced by the above formula is exceedingly small to be
detected or to affect astrophysical or physical processes.
Since we are interested in constructing the dynamics

ruled by the Hamiltonian of (2), we firstly observe that the
free propagating momentum is not a conserved quantity,

d

dt
〈p〉 = i〈[H ,p]〉 = µ〈β∇ (Σ ·B(x))〉. (4)

In the same way, the particle velocity given by

d

dt
〈x〉 = i〈[H ,x]〉 = 〈α〉 (5)

comes out as a non-null value. After solving the x(t) (α(t))
differential equation, it is possible to observe that, in add-
ition to a uniform motion, the fermionic particle executes
very rapid oscillations known as zitterbewegung [38]. By
following an analogous procedure for the Dirac chiral op-
erator γ5, newly recurring to the equation of motion, it is
possible to have the chirality and the helicity dynamics re-
spectively given by

d

dt
〈γ5〉=2 i〈γ0 γ5 [m−µΣ ·B(x)]〉 (6)

and

d

dt
〈h〉=

1

2
µ 〈γ0 [(Σ ·∇)(Σ ·B(x))+2(Σ×B(x)) ·p]〉,(7)

where we have alternatively defined the particle helicity as
the projection of the spin angular momentum onto the vec-
tor momentum, h= 12Σ ·p (with p in place of p̂). From (6)
and (7) we can state that if a neutrino has an intrinsic
magnetic moment and passes through a region filled by a
magnetic field, the neutrino helicity can flip in a completely
different way from how chiral oscillations evolve in time.
In the non-interacting case, it is possible to verify that the
time-dependent averaged value of the Dirac chiral operator
γ5 has an oscillating behavior [31] very similar to the rapid
oscillations of the position. Equations (6) and (7) can be re-
duced to the non-interacting case by setting B(x)= 0, so
that

d

dt
〈h〉 = i〈[H , h]〉 = −〈(α×p) · p̂〉 = 0 (8)

and

d

dt
〈γ5〉 = i〈

[
H , γ5

]
〉 = 2 im〈γ0γ5〉, (9)

from which we confirm that the chiral operator γ5 is not
a constant of the motion [31]. The effective value of (9)
appears only when both positive and negative frequencies
are taken into account to compose a Dirac wave-packet,
i.e. the non-null expectation value of 〈γ0γ5〉 is revealed

2 We are using some results of the standard SU(2)L⊗U(1)Y
electroweak theory [37].

by the interference between Dirac equation solutions with
opposite-sign frequencies. The effective contribution due
to this interference effect lead us to resort to the Dirac
wave-packet formalism in order to quantify neutrino chiral
oscillations in the presence of an external magnetic field.
Assuming the simplifying hypothesis of a uniform mag-

netic field B, the physical implications of the non-minimal
coupling with an external magnetic field can then be
studied by means of the eigenvalue problem expressed by
the Hamiltonian equation

H(p)ϕn = En(p)ϕn={α ·p+β [m−µΣ ·B]}ϕn,(10)

for which the explicit 4×4 matrix representation is given
by

H(p)ϕn =⎡
⎢⎣
m−µBz −µ(Bx− iBy) pz px− ipy

−µ(Bx+iBy) m+µBz px+ipy −pz
pz px− ipy −(m−µBz) µ(Bx− iBy)

px+ipy −pz µ(Bx+iBy) −(m+µBz)

⎤
⎥⎦ϕn.

(11)

The most general eigenvalue (En(p)) solution of the above
problem is given by

En(p)= ±Es(p)

=±

√
m2+p2+a2+ (−1)s2

√
m2a2+ (p×a)2 ,

s = 1, 2 , (12)

where we have denoted En=1,2,3,4 = ±Es=1,2 and we
have set a= µB. The complete set of orthonormal eigen-
states ϕn thus can be written in terms of the eigenfunc-
tions U(ps) with positive energy eigenvalues (+Es(p)) and
the eigenfunctions V(ps) with negative energy eigenvalues
(−Es(p)),

U(ps)=N(ps)

⎧
⎨
⎩

√√√√A−s
A+s
,

√√√√α+s
α−s
,

√√√√A−s α+s
A+s α

−
s
, −1

⎫
⎬
⎭

†

,

V(ps)=N(ps)

⎧⎨
⎩

√√√√A−s
A+s
, −

√√√√α−s
α+s
, −

√√√√A−s α−s
A+s α

+
s
, −1

⎫⎬
⎭

†

,

(13)

where ps is the relativistic quadrimomentum, ps =
(Es(p),p), N(ps) is the normalization constant and

A±s =∆
2
s(p)±2m|a|−a

2,

α±s = 2Es(p)|a|± (∆
2
s(p)+a

2),

with

∆2s(p)= 2

(
a2+ (−1)s

√
m2a2+ (p×a)2

)
. (14)

We can observe that the above spinorial solutions are free
of any additional constraint, namely, at a given time t, they
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are independent functions of p and they do not represent
chirality/helicity eigenstates.
In order to describe the above Hamiltonian dynamics

for a generic observable O(t), we can firstly seek a generic
plane-wave decomposition as

exp [−i(Es(p) t−p ·x)]U(ps), for positive frequencies and

exp [ i(Es(p) t−p ·x)]V(ps), for negative frequencies,
(15)

so that the time evolution of a plane-wave-packet ψ(t,x)
can be written as

ψ(t,x)=

∫
d3p

(2π)3

∑
s=1,2

{b(ps)U(ps) exp [−iEs(p) t]

+d∗(p̃s)V(p̃s) exp [+iEs(p) t]} exp [ip ·x],

(16)

with p̃s = (Es,−p). Equation (16) requires some exten-
sive mathematical manipulations for explicitly construct-
ing the dynamics of an operatorO(t) like

O(t)=

∫
d3xψ†(t,x)Oψ(t,x). (17)

If, however, the quoted observables like the chirality γ5, the
helicity h or even the spin projection onto B commuted
with the Hamiltonian H, we could reconfigure the above
solutions to simpler ones. To illustrate this point, let us
limit our analysis to very restrictive spatial configurations
ofB so that, as a first attempt, we can calculate the observ-
able expectation values which appear in (6). Let us then
assume that the magnetic field B is either orthogonal or
parallel to the momentum p. For both of these cases the
spinor eigenstates can then be decomposed into orthonor-
mal bi-spinors as

U(ps)=N+(ps)

[
ϕ+(ps)

χ+(ps)

]
(18)

and

V(ps)=N−(ps)

[
ϕ−(ps)
χ−(ps)

]
. (19)

Eventually, in order to simplify some subsequent calcula-
tions involving chiral oscillations, we could set ϕ±1,2 and

χ±1,2 as eigenstates of the spin projection operator σ ·B,
i.e. besides being energy eigenstates, the general solutions
U(ps) and V(ps) would become eigenstates of the operator
Σ ·B and, equivalently, ofΣ ·a.
Now (10) can be decomposed into a pair of coupled

equations like

(±Es−m+σ ·a)ϕ
±
s =±σ ·pχ

±
s ,

(±Es+m−σ ·a)χ
±
s =±σ ·pϕ

±
s , (20)

where we have suppressed the ps dependence. By introduc-
ing the commuting relation [σ ·p, σ ·B] = 0, which is de-
rived when p×B = 0, the eigenspinor representation can

be reduced to

U(ps)=

√
Es+ms
2Es

[
ϕ+s

σ·p
Es+ms

ϕ+s

]
(21)

and

V(ps)=

√
Es+ms
2Es

[
σ·p

Es+ms
χ−s
χ−s

]
, (22)

withms =m− (−1)
s|a| and the energy eigenvalues

±Es =±
√
p2+m2s. (23)

In this case, the closure relations can be constructed in
terms of

∑
s=1,2

U(ps)⊗U†(ps)γ0

=
∑
s=1,2

{
γµp

µ
s+ms
2Es

[
1− (−1)sΣ · â

2

]}

−
∑
s=1,2

V(ps)⊗V†(ps)γ0

=
∑
s=1,2

{
−γµp

µ
s+ms
2Es

[
1− (−1)sΣ · â

2

]}
. (24)

Analogously, by introducing the anti-commuting relation
{σ ·p, σ ·B}when p ·B= 0, the eigenspinor representation
can be reduced to

U(ps)=

√
ε0+m

2ε0

[
ϕ+s

σ·p
ε0+m

ϕ+s

]
(25)

and

V(ps)=

√
ε0+m

2ε0

[
σ·p
ε0+m

χ−s
χ−s

]
, (26)

with ε0 =
√
p2+m2 and the energy eigenvalues

±Es =±
[
ε0+ (−1)

s|a|
]
. (27)

In this case, the closure relations can be constructed in
terms of

∑
s=1,2

U(ps)⊗U†(ps)γ0

=
γµp

µ
0 +m

2ε0

∑
s=1,2

[
1− (−1)sγ0Σ · â

2

]

−
∑
s=1,2

V(ps)⊗V†(ps)γ0

=
−γµp

µ
0 +m

2ε0

∑
s=1,2

[
1− (−1)sγ0Σ · â

2

]
, (28)

where p0 = (ε0,p).
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Since we can set ϕ+1,2 ≡ χ
−
1,2 as the components of an

orthonormal basis, we can immediately deduce the orthog-
onality relations

U†(ps)U(pr)= V†(ps)V(pr)= δsr,

U†(ps) γ0 V(pr)= V
†(ps) γ0 U(pr)= 0, (29)

which are valid for both of the above cases.
Finally, the calculation of the expectation value of γ5(t)

is substantially simplified when we substitute the above
closure relations into the wave-packet expression of (16).
To clarify this point, we suppose that the initial condition
over ψ(t,x) can be set in terms of the Fourier transform of
the weight function written as

ϕ(p−pi)w =
∑
s=1,2

{b(ps)U(ps)+d∗(p̃s)V(p̃s)}, (30)

so that

ψ(0,x)=

∫
d3p

(2π)3
ϕ(p−pi) exp [ip ·x]w, (31)

where w is some fixed normalized spinor. By using the or-
thonormality properties of (29), we find [39]

b(ps)=ϕ(p−pi)U
†(ps)w,

d∗(p̃s)=ϕ(p−pi)V
†(p̃s)w. (32)

For any initial state ψ(0,x) given by (31), the negative
frequency solution coefficient d∗(p̃s) necessarily provides
a non-null contribution to the time-evolving wave-packet.
This obliges us to take the complete set of Dirac equation
solutions to construct a complete and correct wave-packet
solution. Only if we consider the initial spinor w being
a positive energy (Es(p)) andmomentum p eigenstate, will
the contribution due to the negative frequency solutions
d∗(p̃s) become null and we will have a simple expression
for the time evolution of any physical observable. By sub-
stituting the closure relations of (24) and (28) into the
time-evolution expression for the above wave-packet, (16)
can thus be rewritten as

ψ(t,x)=

∫
d3p

(2π)3
ϕ(p−pi) exp [ip ·x]

×
∑
s=1,2

{[
cos [Es t]− i

Hs
Es
sin [Es t]

](
1−(−1)sΣ·â

2

)}
w

(33)

for the first case whereEs is given by (23) andHs = α ·p+
γ0ms, or as

ψ(t,x)=

∫
d3p

(2π)3
ϕ(p−pi) exp [ip ·x]

×
∑
s=1,2

{[
cos [Es t]− i

H0
ε0
sin [Es t]

](
1−(−1)sγ0Σ·â

2

)}
w

(34)

for the second case where ε0 is given by (27) and H0 = α ·
p+γ0m.

Now we can proceed with the calculation of the time
evolution of γ5(t) described by (6) assuming the simpli-
fying hypothesis of a uniform magnetic field B. Once we
have assumed that the neutrino electroweak interactions at
the source and detector are (left) chiral

(
ψγµ(1−γ5)ψWµ

)
only the component with negative chirality contributes to
the propagation. It was already demonstrated that, in vac-
uum, chiral oscillations can introduce very small modifica-
tions to the neutrino conversion formula [8, 31]. The proba-
bility of a neutrino produced as a negative chiral eigenstate
be detected after a time t can be summarized by

P (ν
α,L→ να,L; t) =

∫
d3xψ†(t,x)

1−γ5
2
ψ(t,x)

=
1

2
(1−〈γ5〉(t)) . (35)

From this integral, it is readily seen that an initial−1 chiral
mass eigenstate will evolve with time changing its chirality.
By assuming that the fermionic particle is created at time
t= 0 as a −1 chiral eigenstate (γ5w =−w), in the case of
[σ ·p, σ ·B] = 0 (B parallel to p), we can write

〈γ5〉(t)=

∫
d3p

(2π)3
ϕ2(p−pi)

×w†
∑
s=1,2

{[
γ5 cos

2 [Es t]+ i
[Hs, γ5]

2Es
sin [2Es t]

+
Hs γ5Hs

E2s
sin2 [Es t]

](
1− (−1)sΣ · â

2

)}
w

= (−1)

∫
d3p

(2π)3
ϕ2(p−pi)

×
∑
s=1,2

{[
cos2 [Es t]+

p2−m2s
E2s

sin2 [Es t]

]

× w†
(
1− (−1)sΣ · â

2

)
w

}

= (−1)

∫
d3p

(2π)3
ϕ2(p−pi)

×
∑
s=1,2

{[
p2

E2s
+
m2s
E2s
cos [2Es t]

]

× w†
(
1− (−1)sΣ · â

2

)
w

}
, (36)

where we have used the wave-packet expression of (33) and,
in the second passage, we have observed that

w†γ5w =−1, w
†[Hs, γ5]w = 0 and

Hs γ5Hs = p
2−m2s. (37)

The above expression can be reduced to a simpler one in
the non-interacting case [31]. Due to a residual interac-
tion with the external magnetic fieldB we can also observe
chiral oscillations in the ultra-relativistic limit. However,
from the phenomenological point of view, the coefficient of
the oscillating term goes with m2s/E

2
s , which makes chiral

oscillations not relevant for ultra-relativistic neutrinos [8,
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40]. As a toy model illustration, by assuming a highly
peaked momentum distribution centered around a non-
relativistic momentum pi	ms, and with the wave-packet
effects practically ignored, the chiral conversion formula
can be simplified and written as

P (να,L→ να,L; t)≈
1

2
(1+cos [2mt] cos [2 |a| t]

+ sin [2mt] sin [2 |a| t]w†Σ · âw
)
,

(38)

where, in this case, all the oscillating terms come from the
interference between positive and negative frequency so-
lutions which compose the wave-packets. Turning back to
the case where {σ ·p, σ ·B}= 0 (B orthogonal to p), we
observe a phenomenologically more interesting result. By
following a similar procedure with the mathematical ma-
nipulations, we can write

〈γ5〉(t)=

∫
d3p

(2π)3
ϕ2(p−pi)w

†

{
γ5 cos [E1 t] cos [E2 t]

+
H0 γ5H0

ε20
sin [E1 t] sin [E2 t]

+
i

2
[[H0, γ5] sin [E1+E2]

− {H0, γ5}γ0Σ · â sin [E1−E2]]

}
w

= (−1)

∫
d3p

(2π)3
ϕ2(p−pi)

{
cos [E1 t]cos [E2 t]

+
p2−m2

ε20
sin [E1 t] sin [E2 t]

}

= (−1)

∫
d3p

(2π)3
ϕ2(p−pi)

{
p2

ε20
cos [2 |a| t]

+
m2

ε20
cos [2 ε0 t]

}
, (39)

where we have used the wave-packet expression of (34)
and, in addition to w†γ5w = −1, we have also observed
that {H0, γ5}= 2γ5Σ · p̂ and, subsequently, w†Σ · p̂γ0Σ ·
âw = 0. Now, in addition to the non-interacting oscillating
term (m2/ε20) cos [2 ε0 t], which comes from the interference
between positive and negative frequency solutions of the
Dirac equation, we have an extra term which comes from
the interference between equal-sign frequencies and, for
very large time scales, can substantially change the oscil-
lating results. In this case, it is interesting to observe that
the ultra-relativistic limit of (39) leads to the following ex-
pression for the chiral conversion formula:

P (να,L→ να,L(R); t)≈
1

2
(1+(−) cos [2 |a| t]) , (40)

which, differently from chiral oscillations in vacuum, can
be phenomenologically relevant. Obviously, (40) is repro-
ducing the consolidated results already attributed to neu-
trino spin flipping [36] where, only when we take the ultra-
relativistic limit (m= 0), can the chirality quantum num-
ber be approximated by the helicity quantum number.

However, now it was accurately derived from the complete
formalism with Dirac spinors.

3 Flavor coupled to chiral oscillations in
the presence of an external magnetic field

After obtaining the time evolution of the spinorial mass
eigenstate wave-packets in the presence of an external
magnetic field, we have to immediately observe that we
cannot arbitrarily overlook chiral oscillations while treat-
ing neutrino flavor oscillations. Consequently, in order to
quantify the interference of chiral oscillations over neutrino
flavor conversion processes, the chiral nature of charged
weak currents and the time evolution of the chiral operator
must be aggregated to the flavor oscillation formula.
Considering that the main aspects of oscillation phe-

nomena can be understood by studying a two-flavor prob-
lem, we can introduce this simplifying condition for com-
puting the oscillation probabilities. Thus, the time evolu-
tion of flavor wave-packets can be described by the state
vector

Ψ(t,x)= ψ1(t,x) cos θ ν1+ψ2(t,x) sin θ ν2

=
[
ψ1(t,x) cos

2 θ+ψ2(t,x) sin
2 θ
]
να

+[ψ1(t,x)−ψ2(t,x)] cos θ sin θ νβ
= ψα(t,x; θ) να+ψβ(t,x; θ) νβ , (41)

where να and νβ are flavor eigenstates, ν1 and ν2 are mass
eigenstates and θ is the mixing angle. The probability of
finding a flavor state νβ at the instant t is equal to the in-
tegrated squared modulus of the νβ coefficient,

P (να→ νβ ; t) =

∫
d3x |ψβ(t,x; θ)|

2

= sin
2 [2θ]
2 { 1−Dfo(t) } , (42)

where Dfo(t) represents the mass eigenstate interference
term explicitly computed in terms of

Dfo(t) =
1

2

∫
d3x

[
ψ†1(t,x)ψ2(t,x)+ψ

†
2(t,x)ψ1(t,x)

]
.

(43)

Once we have assumed that we have to take into account
the chiral conversion character for obtaining a complete
description of the flavor conversion mechanism, the most
complete oscillation probability formula must be written as

P (να,L→ νβ,L; t) =
sin2 [2θ]
2 {Dco(t)−Dfco(t)} , (44)

where the results for Dco(t) corresponding exclusively to
chiral oscillations for each mass eigenstate component can
be immediately reproduced from (35) as

Dco(t)

=
1

2

∫
d3x

[
ψ†1(t,x)

1−γ5
2
ψ1(t,x)+ψ

†
2(t,x)

1−γ5
2
ψ2(t,x)

]

=
1

2

(
1−
〈γ5〉1(t)+ 〈γ5〉2(t)

2

)
, , (45)
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where the averaged values of γ5 can be, for instance, explic-
itly calculated in terms of the results of (36) and (39) and,
at the same time, the mixed flavor and chiral oscillation
term is given by

Dfco(t) =
1

2

∫
d3x

[
ψ†1(t,x)

1−γ5
2
ψ2(t,x)

+ψ†2(t,x)
1−γ5
2
ψ1(t,x)

]
, (46)

which deserves a more careful calculation. We shall see
then how we explicitly construct the complete oscillation
formula containing both ‘flavor-appearance’ (neutrinos of
a flavor not present in the original source) and ‘chiral-
disappearance’ (neutrinos of wrong chirality) probabilities
for both of the particular cases discriminated in Sect. 2.
The following results are obtained after some simple but
extensive mathematical manipulations where, again, we
have imposed an initial constraint which establishes that
the normalizable mass eigenstate wave functions ψ1,2(t,x)
are created at time t = 0 as a negative chiral eigenstate
(w†1,2γ5w1,2 =−1). All the subsequent calculations do not
depend on the gammamatrix representation. In correspon-
dence with the first case of Sect. 2, where the propagating
momentum p is parallel to the magnetic field B, we can
write

Dfco(t) =
1

2

∫
d3p

(2π)3
ϕ2(p)

∑
s= 1,2

{
w†
(
1− (−1)sΣ · â

2

)
w

×

[(
1+

p2

E
(1)
s E

(2)
s

)
cos
[(
E
(1)
s −E

(2)
s

)
t
]

+

(
1−

p2

E
(1)
s E

(2)
s

)
cos
[(
E
(1)
s +E

(2)
s

)
t
]]}

,

(47)

where we have used the correspondence ϕ2(p)≡ ϕ(p−p1)

ϕ(p−p2) (see the discussion in the appendix) and E
(i)
s =√

p2+m
(i)
s with i = 1, 2 corresponding to the mass in-

dices. In fact, in the ultra-relativistic limit, and for not
very strong magnetic fields (|a| 	 |p|), the contribution
due to the very rapid oscillations which come from the
interference between negative and positive frequency com-
ponents, analogously to the case of purely chiral oscil-
lations, does not introduce relevant modifications to the
flavor conversion formula. Otherwise, by taking the non-
relativistic limit, with a momentum distribution sharply
peaked around |pi| 	mi, the complete oscillation proba-
bility formula can be written as

P (να,L→ νβ,L; t) =
sin2 [2θ]
4

∑
s= 1,2

{
w†
(
1− (−1)sΣ · â

2

)

× w
(
cos
[
m
(1)
s t
]
− cos

[
m
(2)
s t
])2}

,

(48)

which, despite not being phenomenologically verifiable, in-
troduces a completely different pattern for flavor/chiral
oscillations.

Meanwhile, a more interesting interpretation is pro-
vided when we analyze the second case, where the propa-
gating momentum p is orthogonal to the magnetic field B.
Now, in the flavor/chiral oscillation formula, the effects of
the external magnetic field can be discriminated from the
mass interference term, in the sense that we can write the
complete expression for Dfco(t) as

Dfco(t)

=
1

2

∫
d3p

(2π)3
ϕ2(p)

{(
cos
[∣∣∣a(1)

∣∣∣ t
]
cos[|a(2)| t]

)

×

[(
1+
p2+m(1)m(2)

ε
(1)
0 ε

(2)
0

)
cos
[(
ε
(1)
0 − ε

(2)
0

)
t
]

+

(
1−
p2+m(1)m(2)

ε
(1)
0 ε

(2)
0

)
cos
[(
ε
(1)
0 + ε

(2)
0

)
t
]]

+
m(1)m(2)

ε
(1)
0 ε

(2)
0

[
cos
[(
ε
(1)
0 + ε

(2)
0

)
t
]
cos
[(∣∣∣a(1)

∣∣∣−
∣∣∣a(2)

∣∣∣
)
t
]

− cos
[(
ε
(1)
0 − ε

(2)
0

)
t
]
cos
[(∣∣∣a(1)

∣∣∣+
∣∣∣a(2)

∣∣∣
)
t
]]}

, (49)

where we have used the correspondence of a(i) and ε(i)

with m(i). Again, the ultra-relativistic limit reduces the
impact of the modifications to residual effects which are
difficultly detectable by experiments. By taking the non-
relativistic limit and following the same procedure for ob-
taining (48), the complete oscillation probability formula
can be written as

P (να,L→ νβ,L; t)

= sin
2 [2θ]
4

(
cos2

[
m(1)t

]
+cos2

[
m(2)t

]

− 2 cos
[(∣∣∣a(1)

∣∣∣−
∣∣∣a(2)

∣∣∣
)
t
]
cos
[
m(1)t

]
cos
[
m(2)t

])
.

(50)

Turning back to the starting point, if we had postulated
a wave-packet made up exclusively of positive frequency
plane-wave solutions, the oscillation term which appears
as a sum of mass eigenstate energies would have vanished.
The new oscillations have very high frequencies. Such a pe-
culiar oscillating behavior is similar to the phenomenon
referred to as zitterbewegung. In atomic physics, the elec-
tron exhibits this violent quantum fluctuation in the pos-
ition and becomes sensitive to an effective potential, which
explains the Darwin term in the hydrogen atom [38]. It
reinforces the argument that, in constructing Dirac wave-
packets, we cannot simply forget the contributions due to
negative frequency components.

4 Conclusions

To quantify some subtle processes which accomplish the
(standard) flavor oscillation phenomena [15] and emerge
via chiral oscillations of propagating neutrinos non-mini-
mally interacting with an external magnetic field B, we
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have reported some recent results in the study of fla-
vor oscillations with Dirac wave-packets [32]. By taking
into account the spinorial form of neutrino wave functions
and imposing an initial constraint where a pure negative-
chiral-flavor eigenstate is created at t = 0, for a constant
spinor w, we have calculated the contribution to the wave-
packet propagation due to the interference between posi-
tive and negative frequency solutions of the Dirac equation
with non-minimal coupling and, finally, we have obtained
a complete expression for the oscillation probability.
It effectively represents the formally accurate way for

deriving the expression for the neutrino spin flipping in
magnetic fields related to chiral oscillations and coupled
with a flavor conversion mechanism. It is also to be noted
that in the above discussion we have assumed that neu-
trinos are Dirac particles, thus making the positive-chiral
component sterile. If the neutrino was a Majorana particle,
it should not have a magnetic moment, obviating the spin
flipping via magnetic field interactions but still allowing
the (vacuum) chiral conversion possibility via very rapid
oscillations (zitterbewegung).
We have confirmed that the fermionic character of the

particlesmodifiesthestandardoscillationprobability,which
was previously obtained by implicitly assuming a scalar na-
ture of the mass eigenstates. At the same time, it allows us
to correctly determine the origin and the influence of chiral
oscillations and spin flipping in the complete flavor conver-
sion result. Strictly speaking, we have obtained the term
of very high oscillation frequency depending on the sum of
energies in the new oscillation probability formula which,
in case of Dirac wave-packets, represents some modifica-
tions that introduce correction factors which are negligible
in the ultra-relativistic limit. Our future perspectives are
concerned with deriving the flavor coupled with chiral con-
version expressions for neutrinosmoving in the background
matterbysupposing that themagnitudeof someexperimen-
tally (implicitly) observable matter effects could be quan-
tified (and eventually detected) in this Dirac wave-packet
framework. In particular, under the point of view of a phe-
nomenological analysis, we cannot discard the possibility of
existing largermagneticmomentum(10−12µB) for the elec-
tron/muon neutrinos deduced from some extensions of the
minimal standard model [41, 42], which eventually can be
implemented in a subsequent study.
We know, however, that the necessity of a more so-

phisticated approach is understood. In fact, the derivation
of the oscillation formula should resort to field-theoretical
methods which, meanwhile, are not very popular. They
are thought to be very complicated and the existing quan-
tum field computations of the oscillation formula do not
agree in all respects [16]. The Blasone and Vitiello (BV)
model [9, 11] of neutrino/particle mixing and oscillations
seems to be the most distinguished trying for this aim. But,
still with Dirac wave-packets, the flavor conversion formula
can be reproduced [32] with the same mathematical struc-
ture as those obtained in the BV model [9, 11]. Moreover,
each new effect present in the oscillation formula can be
separately quantified.
Just to summarize, we would not have not been hon-

est if we had ignored the complete analysis of the general

case composed by (10)–(13), where we had not yet assumed
an arbitrary spatial configuration for the magnetic field.
Meanwhile, such a general case leads to the formal connec-
tion between quantum oscillation phenomena and a very
different field. It is concerned with the curious fact that
the above complete (general) expressions for propagating
wave-packets do not satisfy the standard dispersion rela-
tions like E2 =m2+p2 excepting the two particular cases
where Es(p)

2 =m2s+p
2 for p×B= 0 or ε20 =m

2+p2 for
p ·B = 0. In principle, it could represent an inconvenient
obstacle which forbids the extension of these restrictive
cases to a general one. However, we believe that it can also
represent the starting point for discussing dispersion rela-
tions which can be incorporated into frameworks encoding
the breakdown (or the validity) of Lorentz invariance.

Acknowledgements. The author thanks FAPESP (PD 04/
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Appendix : Flavor oscillations with
wave-packets – common points
between scalar and fermionic
prescriptions

By reviewing the flavor conversion process for which we de-
nominate a scalar prescription [13], we notice that the time
evolution of flavor wave-packets can be described by

φ(t,x)= φ1(t,x) cos θ ν1+φ2(t,x) sin θ ν2

=
[
φ1(t,x) cos

2 θ+φ2(t,x) sin
2 θ
]
να

+[φ1(t,x)−φ2(t,x)] cos θ sin θ νβ
= φα(t,x; θ) να+φβ(t,x; θ) νβ , (A.1)

where να and νβ are flavor eigenstates and ν1 and ν2 are
mass eigenstates. The probability of finding a flavor state
νβ at the instant t is equal to the integrated squared mod-
ulus of the νβ coefficient

P (να→ νβ ; t) =

∫
d3x |φβ(t,x; θ)|

2

= sin
2 [2θ]
2 { 1−Fo(t) } , (A.2)

where Fo(t) represents the mass eigenstate interference
term given by

Fo(t) = Re

[ ∫
d3xφ†1(t,x)φ2(t,x)

]
. (A.3)

As an illustrative example, we can consider Gaussian
wave-packets given at time t= 0 by

φi(0,x) =

(
2

πa2

) 1
4

exp

[
−
x2

a2

]
exp [ipi z], (A.4)



A.E. Bernardini: Flavor coupled with chiral oscillations in the presence of an external magnetic field 121

where s = 1, 2. The wave functions which describe their
time evolution are

φi(t,x)

=

∫
d3p

(2π)3
ϕ(p−pi) exp

[
−iE(p,mi) t+ip ·x

]
,

(A.5)

where E(p,mi) =
(
p2+m2i

) 1
2
and

ϕ(p−pi) =
(
2πa2

) 1
4 exp

[
−
(p−pi)

2 a2

4

]
.

In order to obtain the oscillation probability, we can cal-
culate the interference term Fo(t) by solving the following
integral:

∫
d3p

(2π)3
ϕ(p−p1)ϕ(p−p2) exp [−i∆E(p) t]

= exp

[
−
(a∆p)2

8

]∫
d3p

(2π)3
ϕ2(p−p0) exp [−i∆E(p) t],

(A.6)

where we have changed the z-integration into a p-integra-
tion and introduced the quantities ∆|p| = p1−p2, p0 =
1
2 (p1+p2) and ∆E(p) = E(p,m1)−E(p,m2). The os-
cillation term is bounded by the exponential function of
a∆|p| at any instant of time. Under this condition we
could never observe a pure flavor eigenstate. Besides, os-
cillations are considerably suppressed if a∆|p|> 1. A ne-
cessary condition to observe oscillations is that a∆|p| 	
1. This constraint can also be expressed by δ|p| 
∆|p|,
where δ|p| is the momentum uncertainty of the particle.
The overlap between the momentum distributions is in-
deed relevant only for δ|p| 
∆|p|. Consequently, without
loss of generality, we can assume that

Fo(t) = Re

{∫
d3p

2π
ϕ2(p−p0) exp [−i∆E(p) t]

}
.

(A.7)

In the literature, this equation is often obtained by as-
suming two mass eigenstate wave-packets described by the
‘same’ momentum distribution centered around the aver-
age momentum p̄ = p0. This simplifying hypothesis also
guarantees instantaneous creation of a pure flavor eigen-
state να at t= 0. In fact, for φ1(0,x) = φ2(0,x) we obtain
from (A.1)

φα(0,x, θ) =

(
2

πa2

) 1
4

exp

[
−
x2

a2

]
exp [ip0 ·x] (A.8)

and φβ(0,x, θ) = 0.
The time evolution of a spin-one-half particle follows

an analogous prescription. Once we have introduced the
fermionic character in the study of quantum oscillation
phenomena, we can use the Dirac equation as the evolution

equation for the mass eigenstates represented by ψi(t,x),
so that the natural extension of (A.8) reads

ψα(0,x, θ) = φα(0,x, θ)w, (A.9)

where we assume that w is the constant spinor which satis-
fies the normalization condition w†w = 1.
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